Печатные платы для блоков питания на ir2153 ir2155. Схемотехника питания материнких плат Схема платы бп

Разъёмы питания на материнской плате: форм-факторы AT/LPX и ATX

Каждый блок питания для ПК имеет разъёмы, которые подключаются к материнской плате, обеспечивая питание для работы материнской платы, процессора, памяти, чипсета, встроенных компонентов (таких как видео, сетевые адаптеры, контроллеры USB и FireWire), а также карт расширения. Данные коннекторы БП имеют первостепенное значение, не только потому, что они являются основным источником питания компьютера, но и потому, что неправильное их подключение может оказать разрушительное воздействие на систему, привести к выходу из строя как материнской платы, так и блока питания. Точно так же, как и физическая форма БП, данные разъёмы обычно устроены таким образом, чтобы соответствовать одной из нескольких отраслевых спецификаций, которые определяют тип разъёмов, их физическую форму, а также предназначение и уровень напряжения на отдельных выходах, расположенных на коннекторе. К сожалению, как и в случае с форм-факторами блоков питания, некоторые производители ПК используют блоки питания с оригинальным типом разъемов или, что ещё хуже, используют стандартные разъёмы с определёнными модификациями отдельных выходов (уровень сигнала, напряжения, отличные от спецификации). Подключение стандартного разъёма от блока питания к такому модифицированному гнезду на материнской плате может привести к выходу из строя материнской платы и блока питания.

Поскольку мы рекомендуем использовать блоки питания стандартных форм-факторов, отсюда вытекает и рекомендация использовать и материнские платы, имеющие разъёмы, полностью соответствующие спецификации блока питания. Лишь используя стандартные комплектующие, вы можете гарантировать себе в дальнейшем низкую стоимость ремонта или обновления ПК.

За долгие годы существовало два основных набора разъёмов питания: AT/LPX и ATX. Каждый из них имел незначительные модификации. Например, стандарт ATX совершенствовался, обзавёлся новыми типами разъемов и модификации к существующим вариантам. В данной части нашей статьи мы поговорим о разъёмах БП, предназначенных для подключения к материнской плате, которые соответствуют отраслевым стандартам, но остановимся и на некоторых решениях, которые стандартам не соответствуют.

Разъёмы для материнской платы блоков питания AT/LPX

Материнские плат стандартов PC, XT, AT, Baby-AT и LPX используют одинаковый набор разъёмов для питания. Блоки питания AT/LPX оснащены двумя разъёмами (P8 и P9) для подключения к материнской плате, каждый из которых имеет по шесть контактов. Эти контакты могут поддерживать ток до 5 А напряжением до 250 В, хотя в ПК используется максимальное напряжение до +12 В. Данные разъёмы изображены на следующих схемах:

Основные разъёмы P8/P9 (также называются P1/P2) для материнской платы на блоках питания AT/LPX. Вид сбоку, расположение контактов

Все блоки питания AT/LPX, в которых применяются разъёмы P8 и P9, требуют их подключения "нога к ноге", то есть чёрные провода, которые обеспечивают заземление, на обоих разъёмах после установки в гнезда на плате должны быть обращены друг к другу. Обратите внимание, что маркировка P8 и P9 полностью не стандартизована, хотя большинство применяла именно такие наименования, так как они использовались в оригинальных блоках питания компании IBM. Некоторые блоки питания вместо P8/P9 используют маркировку P1/P2. Поскольку данные разъёмы, как правило, имеют зажим-фиксатор, который препятствует их установке в противоположные гнезда, наибольшее внимание необходимо уделить правильной ориентации разъёмов и обеспечить точное соответствие контактов на разъёме с гнёздами на плате, чтобы на разъёме с блока питания не осталось свободных контактов. Следуйте принципу "чёрный провод к чёрному" и убедитесь, что разъём зафиксирован точно по центру гнезда. Вам необходимо удостовериться, что на плате не осталось ни одного свободного контакта после установки обоих коннекторов. Правильно установленная вилка разъёма чётко фиксируется на плате и полностью закрывает гнездо. Если после подключения вы видите на гнезде материнской платы свободные контакты или между двумя разъёмами P8 и P9 есть свободное пространство, это говорит о том, что разъёмы были подключены неправильно и может привести к выходу из строя как самой платы, так и всех комплектующих, которые к ней подключены, сразу после включения питания. На следующей схеме показаны разъёмы P8 и P9 (либо маркированные как P1/P2) в правильной ориентации при подключении к материнской плате:

Разъёмы P8 и P9 (P1/P2) блока питания AT/LPX, имеющие правильную ориентацию при подключении к материнской плате

В следующей таблице приводится назначение отдельных контактов разъёмов P8 (P1) и P9 (P2) блока питания AT/LPX:

Контакты разъёмов для материнской платы блока питания AT/LPX
Разъём Контакт Сигнал Цвет
P8 (или P1) 1 Power_Good (+5V) Оранжевый
P8 (или P1) 2 +5V* Красный
P8 (или P1) 3 +12V Жёлтый
P8 (или P1) 4 -12V Синий
P8 (или P1) 5 Ground Чёрный
P8 (или P1) 6 Ground Чёрный
P9 (или P2) 1 Ground Чёрный
P9 (или P2) 2 Ground Чёрный
P9 (или P2) 3 -5 V Белый
P9 (или P2) 4 +5 V Красный
P9 (или P2) 5 +5 V Красный
P9 (или P2) 6 +5 V Красный

* Материнские платы PC/XT первого поколения и блоки питания не требуют данного напряжения, поэтому контакт может отсутствовать на материнской плате, а разъём блока питания может быть лишён как самого контакта (P8 pin 2), так и соответствующего провода на кабеле.

Некоторые производители не использовали стандартные цветовые маркеры, но конфигурация контактов даже в этом случае должна совпадать с приведённой выше.

Хотя старые блоки питания PC/XT не оснащены контактом P8 pin 2, всё равно вы можете использовать их с материнскими платами стандарта AT (или, наоборот, использовать блок питания, имеющий контакт P8 pin 2, с материнской платой без такового). Наличие или отсутствие тока +5 В по данному контакту не существенно или вообще не требуется для системы, так как остающийся контакт +5 В поддерживает необходимую нагрузку). Отметим, что все блоки питания AT/LPX используют одну и ту же конфигурацию контактов на разъёме и нам не известны исключения из данного правила.

Разъёмы для материнской платы блоков питания ATX и ATX12V

Блоки питания, соответствующие первоначальным версиям форм-фактора ATX и ATX12V 1.x, а также варианты, реализованные на базе данных стандартов, имеют следующие три разъёма для обеспечения питания материнской платы:

  • 20-контактный основной разъём питания.
  • 6-контактный дополнительный разъём питания.
  • 4-х контактный разъём питания +12 В.

Основной разъём питания требуется всегда, но два других являются опциональными и могут отсутствовать. Таким образом, блок питания ATX или ATX12V может иметь четыре комбинации набора разъёмов:

  • Только основной разъём питания.
  • Основной и дополнительный разъёмы.
  • Основной разъём и коннектор +12 В.
  • Основной, дополнительный и разъём +12 В.

Наиболее распространёнными являются варианты, включающие только основной разъём питания, а также основной разъём и коннектор +12 В. В большинстве материнских плат имеется гнездо для разъёма +12 В, но отсутствует возможность использовать дополнительный 6-контактный коннектор, или наоборот.

Основной 20-контактный разъём питания.

Основной 20-контактный разъём питания, стандартный для всех БП, соответствующих спецификациям ATX и ATX12V 1.x, оснащён розеткой Molex Mini-Fit Jr., имеющей контакты, которые фиксируются в штырьках на соответствующем гнезде материнской платы. Розетка соответствует спецификации Molex 39-01-2200, а контакты - спецификации 5556. Таким образом, разъём представляет собой розетку с набором контактов, представленных на приведённой ниже фотографии. Цветовая маркировка проводов соответствует рекомендациям к стандарту ATX, однако, производитель может использовать иную маркировку, так как она не является обязательным условием, прописанным в спецификации данного стандарта. На схеме мы изобразили розетку вместе с проводами, что позволяет получить представление, каким образом располагаются провода на другой стороне розетки. Таким образом, мы можете видеть, как именно расположены провода при подключении разъёма к материнской плате:

Основной 20-контактный разъём блока питания стандарта ATX



Схема расположения контактов на разъёме ATX 20-pin
Цвет Сигнал Контакт Контакт Сигнал Цвет
Оранжевый +3.3 V 11* 1 +3.3 V Оранжевый
Синий -12 V 12 2 +3.3 V Оранжевый
Чёрный GND 13 3 GND Чёрный
Зелёный PS_On 14 4 +5 V Красный
Чёрный GND 15 5 GND Чёрный
Чёрный GND 16 6 +5 V Красный
Чёрный GND 17 7 GND Чёрный
Белый -5 V 18** 8 Power_Good Серый
Красный +5 V 19 9 +5 VSB (Standby) Фиолетовый
Красный +5 V 20 10 +12 V Жёлтый

* Контакт Pin 11 может иметь дополнительный оранжевый или коричневый провод, использующийся для возврата тока +3,3 В. БП использует данный провод для контроля тока +3,3 В.

** Контакт Pin 18 не используется, так как напряжение -5 V было удалено из спецификации ATX12V 1.3 и более поздних версий. БП без питания на контакте pin 18 не рекомендуется использовать со старыми материнскими плата, в которых присутствует шина ISA.

Блок питания ATX обеспечивает несколько типов сигнала и напряжений, не предусмотренных на старых блоках питания AT/LPX, а именно: +3.3 V, PS_On и +5V_Standby. Поэтому невозможно каким-то образом доработать БП форм-фактора LPX, чтобы заставить его должным образом работать с материнской платой ATX, несмотря на то, что физически форма и габариты блоков питания ATX и более старых стандартов идентичны.

Вместе с тем, поскольку ATX дополняет с точки зрения набора сигналов и выходных напряжений старые блоки питания LPX, возможно с помощью переходника заставить работать блок питания ATX с материнской платой, предполагающей питание от старых разъёмов AT/LPX.

Одна из наиболее важных проблем, касающихся разъёмов блока питания заключается в том, чтобы обеспечить требуемую мощность без нагревания контактов. Вряд ли вы сможете полноценно пользоваться блоком питания мощностью 500 Вт, если кабели и вилки рассчитаны на нагрузку не более 250 Вт, при превышении которой начнут плавиться. Когда речь заходит о кабелях и разъёмах подключения, их расчётная мощность обычно приводится в амперах и отражает величину проходящего тока, при которой контакт разогревается на 30 градусов Цельсия, если температура окружающей среды составляет 22 градуса. Иными словами, если нормальная температура составляет 22°C, при максимальной нагрузке температура проводников, из которых изготовлен провод и разъём питания, не должна превышать 52°C. Поскольку нормальная температура внутри работающего ПК может достигать 40°C или более высоких значений, максимальный ток через разъём питания может разогреть разъёмы до экстремально высокой температуры.

Максимальный уровень тока, на который рассчитаны провода и контакты на розетке, зависит не только от диаметра и материала проводов/контактов, но и от их количества в связке. Например, контакт питания может выдержать ток 8 А, если используется в четырёхжильном кабеле, но при использовании в 20-жильном кабеле питания максимальный ток снижается до 6 А.

Все современные блоки питания ATX имеют стандартизованные контакты Molex Mini-Fit Jr для основного разъёма питания, а также дополнительного разъёма +12 В. Количество контактов и проводов в связке, таким образом, может варьироваться от четырёх до 24. Molex выпускает три типа контактов для данных разъёмов: стандартная версия, версия HCS и версия Plus HCS. Текущие характеристики данных контактов представлены в следующей таблице:

Расчетная сила тока для контактов Molex Mini-Fit Jr.
Контакты Mini-Fit Jr. версия/номер по спецификации Molex 2-3 контакта 4-6 контакта 7-10 контактов 12-24 контактов
Стандартный/5556 9 А 8 А 7 А 6 А
HCS/44476 12 А 11 А 10 А 9 А
Plus HCS/45750 12 А 12 А 12 А 11 А

Все значения указаны для связки 12-24 контактов Mini-Fit Jr. при использовании проводов 18-го калибра (американская система классификации, соответсвует диаметру 1 мм) и стандартной температуре.

Таким образом, основной 20/24-контактный разъём от блока питания стандарта ATX может выдержать ток до 6 А на контакт в случае использования стандартных контактов Molex. Если применяются более качественные контакты версии HCS, то это значение возрастает до 9 А, а при использовании версии Plus HCS - до 11 А на контакт.

До марта 2005 во всех спецификациях к форм-фактору ATX указывались контакты Molex стандартного типа, но в марте 2005 были представлены новые версии спецификаций, в которых среди требований к конфигурации розетки питания разъёмов появились контакты HCS. Если разъём блока питания перегревается во время работы, достаточно заменить стандартные контакты в вилках на версию HCS или Plus HCS, что позволит увеличить на 50% или более мощность тока, передаваемого через данный разъём.

Учитывая количество контактов для каждого уровня напряжения, можно определить способность разъёма нести необходимый уровень нагрузки, как показано в следующей таблице:

Максимальная мощность на контакты разъёма ATX 20-pin
Напряжение Контакт При использовании стандартных контактов Molex При использовании контактов Molex HCS При использовании контактов Plus HCS
+3.3 В 3 59.4 Вт 89.1 Вт 108.9 Вт
+5 В 4 120 Вт 180 Вт 220 Вт
+12 В 1 72 Вт 108 Вт 132 Вт
Общая мощность - 251.4 Вт 377.1 Вт 460.9 Вт

Стандартные контакты Molex рассчитаны на ток 6 А.

На все материнские платы подается постоянное напряжение, которое должно обеспечивать стабильность питания всех узлов материнской платы. Питание подается следующих номиналов: ±12, ±5 и +3,3В. При этом, по каждому каналу напряжений должен обеспечиваться соответствующий необходимый потребляемый ток.

Наибольший ток потребляется процессором и подается на видеокарту через слот AGP или PCI -Express и через дополнительные разъемы питания на ней. Для стабильности работы всех узлов материнской платы (процессора, слотов памяти, чипсета) необходимо обеспечить стабильность питания, подаваемого на плату, а также преобразовать подаваемые номиналы в необходимые на данном компоненте платы.

Применение VRM

На плате находится разъём для подключения питания, на сегодняшний день стандарт предусматривает установку минимум двух разъемов – 24-контактного ATX и 4-контактного ATX12V для дополнительной линии 12В. Иногда производители материнских плат устанавливают 8-контактный EPS12V вместо ATX12V, через него можно подвести две линии 12В. Питание, подаваемое блоком питания, проходит преобразование, стабилизацию и фильтрацию с помощью силовых полевых транзисторов (MOSFET , «мосфетов»), дросселей и конденсаторов, составляющих VRM (Voltage Regulation Module, модуль регулирования напряжения). Питание процессора и чипсета осуществляется одним VRM, питание модулей памяти – чаще всего другим. Дополнительно для стабилизации питания, подаваемого через разъёмы PCI Express, иногда устанавливаются стандартные разъёмы Molex.

VRM разработан для того, чтобы существующие системные платы могли поддерживать несколько типов процессоров, а также те, которые появятся в будущем. Ведь каждый процессор имеет свое напряжение питания. При установке процессора в материнскую плату по соответствующим контактам VID (4 или 6 штук) тот определяет модель установленного процессора и подает на его кристалл (ядро) соответствующее напряжение питания. Фактически, комбинация 0 и 1 на выводах VID задает 4 или 6-битный код, по которому VRM «узнает» о модели процессора.

Для примера рассмотрим питание ядер процессоров модели Intel Core 2 Extreme (Conroe, техпроцесс, 65 нм, частота 2,93 ГГц, 4 Мбайт L2).

Для этого процессора значение VID находится в диапазоне 0,85–1,36525 В, максимальный ток для верхней модели E6800 может достигать величины 90 А, для остальных, представленных моделями E6300, Е6400, Е6600, Е6700, - 75 А. VRM для процессоров Intel Core 2 Duo должен удовлетворять спецификации 11.0.

Существует два типа регуляторов: линейный и импульсный . Применявшийся в более старых платах линейный регулятор напряжения представлял собой микросхему, понижающую напряжение за счет рассеяния его избытка в виде тепла. С уменьшением требуемого напряжения росла тепловая мощность, рассеиваемая такими регуляторами, поэтому они снабжались массивными радиаторами, по которым их легко было найти на материнской плате. При установке в материнскую плату процессора, потребляющего большую мощность, регулятор (а с ним и материнская плата) мог выйти из строя из-за перегрева. Поэтому в современных материнских платах применяется импульсный регулятор , содержащий сглаживающий фильтр низких частот, на который подается последовательность коротких импульсов полного напряжения.

Импульсный стабилизатор содержит реактивно-индуктивный LC-фильтр, на который короткими импульсами подается полное напряжение питания, и за счет инерции емкости и индуктивности выравнивается до требуемой величины, причем бесполезных потерь энергии практически не происходит. Стабильность напряжения поддерживается путем управления частотой и шириной импульсов (широтно-импульсная модуляция, ШИМ ). При широтно-импульсной модуляции в качестве несущего колебания используется периодическая последовательность прямоугольных импульсов, а информационным параметром, связанным с дискретным модулирующим сигналом, является длительность этих импульсов. Периодическая последовательность прямоугольных импульсов одинаковой длительности имеет постоянную составляющую, обратно пропорциональную скважности импульсов, то есть прямо пропорциональную их длительности. Пропустив импульсы через ФНЧ с частотой среза, значительно меньшей, чем частота следования импульсов, эту постоянную составляющую можно легко выделить, получив стабильное постоянное напряжение.

Применение импульсных стабилизаторов позволяет значительно сократить тепловыделение, однако создает дополнительный источник помех, который может влиять на работу видео- и звуковых адаптеров.

Таким образом, VRM – это по сути ШИМ-регулятор на микросхеме с преобразователями на MOSFET и фильтром . Как правило, напряжение на системной плате выше, чем на ядре процессора.

Традиционно основные регуляторы напряжения расположены вокруг процессорного разъема. Учитывая высокие значения потребляемых токов, они создаются многоканальными (многофазными). Обычно их число три-четыре, но на топовых платах их число может достигать 8. Отказ от одноканального питания снижает нагрузку на регулирующие транзисторы. С целью улучшения температурных режимов их работы, а также повышения надежности, силовые транзисторы нередко снабжаются средствами охлаждения (радиаторами).

В дополнение к многоканальному VRM, индивидуальными системами энергопитания снабжены цепи видеоадаптера и модулей оперативной памяти. Они обеспечивают необходимые уровни напряжений и токов, а также снижают взаимное влияние, передаваемое по силовым шинам.

Большое количество вентиляторов, сосредоточенных в небольшом объеме, создает сравнительно высокий уровень акустического шума. Уменьшить его можно специальным дизайном материнских плат, предусматривающим использование решений на основе тепловых трубок (heat pipe).

В качестве примера можно привести плату Gigabyte GA-965P-DQ6. На ней радиаторы, установленные на обеих микросхемах чипсета, соединены несколькими тепловыми трубками с радиаторами, установленными на силовых транзисторах VRM.

Такое решение обеспечивает эффективное перераспределение тепловых потоков между несколькими радиаторами. В результате выравниваются температуры элементов, работающих в ключевых режимах, являющихся источниками неравномерного нагрева, как в пространстве, так и во времени. Охлаждению же всей конструкции способствует общий дизайн, предусматривающий использование воздушных потоков, порождаемых вентиляторами процессора и кулера.

Оценивая эффективность данного решения, необходимо отметить, что еще одним фактором, способствующим уменьшению тепловой и электрической нагрузок на транзисторы VRM, является реализация большого количества каналов (фаз) питания. Например, в архитектуре указанной платы их двенадцать. Столь большое количество каналов существенно упрощает конструкцию VRM, улучшает развязку по линиям питания, уменьшает электрические помехи и увеличивает устойчивость работы компьютерных подсистем. Кроме того, описанная конструкция с пассивными кулерами, аналог которой активно используется, кстати, в бесшумных моделях видеоадаптеров этого же производителя, уменьшает акустический шум и от материнской платы.

Конструкция регулятора напряжения позволяет подавать на него 5 или 12 В (на выходе – напряжение питания процессора). В системе в основном используется напряжение 5 В, но многие компоненты в настоящее время переходят на 12 В, что связано с их энергопотреблением. Кроме того, напряжение 12 В используется, как правило, приводным электродвигателем, а все другие устройства потребляют напряжение 5 В. Величина напряжения, потребляемого VRM (5 или 12 В), зависит от параметров используемой системной платы или конструкции регулятора. Современные интегральные схемы регуляторов напряжения предназначены для работы при входном напряжении от 4 до 36 В, поэтому их конфигурация всецело зависит от разработчика системной платы.

Как правило, в системных платах, предназначенных для процессоров Pentium III и Athlon/Duron, использовались 5-вольтные регуляторы напряжения. В последние годы возникла тенденция к переходу на регуляторы, потребляющие напряжение 12 В. Это связано с тем, что использование более высокого напряжения позволяет значительно уменьшить текущую нагрузку. Например, если использовать тот же 65-ваттный процессор AMD Athlon с рабочей частотой 1 ГГц, можно получить несколько уровней нагрузки при различных величинах потребляемого напряжения

При использовании напряжения 12 В сила потребляемого тока достигает только 5,4 А или, с учетом 75% эффективности регулятора напряжения, 7,2 А. Таким образом, модификация схемы VRM системной платы, позволяющая использовать напряжение 12 В, представляется достаточно простой. К сожалению, стандартный блок питания ATX 2.03 содержит в основном силовом разъеме только один вывод +12 В. Дополнительный разъем вообще не содержит выводов +12 В, поэтому толку от него немного. Подача тока силой 8 А и более на системную плату, осуществляемая при напряжении +12 В через стандартный провод, может привести к повреждению разъема.

Для повышения энергообеспечения системных плат в Intel была создана новая спецификация блоков питания ATX12V. Результатом этого стал новый силовой разъем, предназначенный для подачи дополнительного напряжения +12 В на системную плату.

В плате ASUS P5B-E Plus , основанной на чипсете Intel P965 Express, VRM используется 4-канальный, а значит, более приспособленный к надежной поддержке мощных (или сильно разогнанных) процессоров. Дизайном предусмотрено охлаждение половины из ключевых транзисторов, но на данной модели радиатор не установлен. Разъем подачи питания на VRM сделан 8-контактным, чтобы уменьшить вдвое ток, проходящий по линиям +12 В. Впрочем, если у вашего блока питания нет такого разъема, можно подключить плату и через 4-контактный разъем.

Питание процессора и чипсета осуществляется одним VRM, питание модулей памяти и видеоадаптера – чаще всего другими. Это обеспечивает необходимые уровни напряжений и токов, отсутствие просадок по питанию, а также снижает взаимное влияние, передаваемое по силовым шинам.

Схемотехника стабилизаторов питания

Практически все современные стабилизаторы строятся на базе того или иного интегрированного ШИМ-контроллера (PWM) — довольно сложной микросхемы с кучей выводов по краям. Одна группа выводов «заведует» выходным напряжением, которое выбирается комбинацией логических «1» и «0», подаваемых на эти ноги. В зависимости от конструктивной реализации эти выводы могут либо сразу идти на перемычки или быть мультиплексированы еще с чем-то другим.

Пару слов о ключевых элементах. Стабилизатор может быть собран либо на двух n-канальных МОП-транзисторах, в этом случае сток (drain) одного транзистора соединен в точке выхода (Vout) с истоком (source) другого. Оставшийся исток идет на массу, а сток — на стабилизируемое напряжение. Это облегчает поиск делителей на неизвестных микросхемах. Находим два мощных транзистора, смотрим — где они соединяются (там еще дроссель будет) и ищем резистор, ведущий к той же точке. Если с другим концом резистора соединен резистор, идущий на массу — делитель найден!

Большинство схем построено именно по такому принципу, однако вместо второго транзистора может использоваться и диод. Внешне он похож на транзистор, только на нем (как правило) написано MOSPEC, а два крайних вывода замкнуты накоротко. Такая схема проще в исполнении, содержит меньше деталей, однако за счет падения на прядения на n-p переходе (~0,6 В) снижается КПД и увеличивается рассеиваемая тепловая мощность, то есть, попросту говоря, нагрев.

В одних случаях каждый узел питается своим собственным стабилизатором (и вся плата тогда в стабилизаторах), в других — производители путем хитроумных извращений запитывают несколько узлов от одного стабилизатора. В частности, на ASUS P5AD2/P5GD2 один и тот же стабилизатор питает и северный мост, и память, используя кремниевый диод для зарядки обвязывающего конденсатора до нужного напряжения. Поэтому напряжение на выходе стабилизатора будет отличаться от напряжения на чипсете. Увеличивая напряжение на памяти, мы неизбежно увеличиваем напряжение и чипсете, спалить который гораздо страшнее, да и греется он сильно.

Стабилизатор может собираться и на операционном усилителе, и на преобразователе постоянного тока или даже на микроконтроллере. Усилители/преобразователи обычно имеют прямоугольный корпус и небольшое количество ног (порядка 8), а рядом с ними расположены электролитические конденсаторы, дроссели и мощные ключевые транзисторы, иногда подключаемые к микросхеме напрямую, иногда — через дополнительный крохотный транзистор. Микроконтроллеры — это такие небольшие микросхемы в прямоугольном корпусе с кучей ног (от 16 и больше), рядом с которым торчат конденсаторы/дроссели/транзисторы (впрочем, на дешевых платах дроссели часто выкидывают, а количество конденсаторов сводят к минимуму, оставляя в нераспаянных элементах букву L).

Как выделить стабилизаторы среди прочих микросхем? Проще всего действовать так: выписываем маркировку всех мелких тараканов и лезем в сеть за datasheet"ами, в которых указывается их назначение и, как правило, типовая схема включения, на которой где-то должен быть делитель, подключенный к одному из выводов. Делитель — это два резистора, один из которых всегда подключен к выходу стабилизатора (Vout), а другой — к массе (GROUND или, сокращенно, GND). Выход найти легко, во-первых — вольтметром, во-вторых — чаще всего он расположен в точке соединения двух ключевых транзисторов от которой отходит дроссель (если он есть).

Изменяя сопротивление резисторов делителя, мы пропорционально изменяем и выходное напряжение стабилизатора. Уменьшение сопротивление резистора, подключенного в массе, вызывает увеличение выходного напряжения и наоборот. «Выходной» резистор при уменьшении своего сопротивления уменьшает выходное напряжение.

Современные мощные ключевые транзисторы IGBT, MOSFET имеют довольно высокую емкость затвора (>100 пФ) которая не позволяет «быстро» (десятки кГц) переключать ключевой транзистор. Поэтому для быстрого заряда/разряда емкости затвора применяются спец. схемы или готовые ИМС, называемые «драйверами» которые обеспечивают быстрый перезаряд емкости затвора. В нашем случае, драйвером могут быть как сами микросхемы ШИМ-контроллеров, так и внешние каскады — внешние драйверы (обычно в многофазных преобразователях). Формально любой управляющий (например, предоконечный) каскад может быть драйвером.

На картинке выше представлен новый подход с исполнению ШИМ : вместо 3 микросхем — драйвера и двух мосфетов используется одна интегральная микросхема, включающая в себя все эти компоненты. Такие микросхемы с некоторых пор стали использоваться на дорогих платах Gigabyte и других ведущих производителей.

Именно в этой спецификации приведены все основные типовые сигналы для такой микросхемы:

Микросхемы памяти в зависимости от своих конструктивных особенностей могут требовать большего или меньшего количества питающих напряжений. Как минимум, необходимо запитать ядро — VDD. Вслед за ним идут входные буфера VDDQ, напряжение питания которых не должно превышать напряжения ядра и обычно равно ему. Термирующие (VTT) и референсные (Vref) напряжения равны половине VDDQ. (Некоторые микросхемы имеют встроенные термирующие цепи и подавать на них VTT не нужно).

Применяемые микросхемы

Рассмотрим старую добрую ASUS P4800-E на базе чипсета i865PE. Внимательно рассматривая плату, выделяем все микросхемы с не очень большим количеством ног. Возле северного моста мы видим кварц , а рядом с ним — серый прямоугольник ICS CA332435 . Это — клокер , то есть тактовый генератор. Процессор, как обычно, окружен кучей конденсаторов, дросселей и других элементов, выдающих близость стабилизатора питания. Остается только найти ШИМ-контроллер , управляющий стабилизатором . Маленькая микросхема с надписью ADP3180 фирмы Analog Devices . Согласно спецификации (http://www.digchip.com/datasheets/download_datasheet.php?id=121932&part-number=ADP3180) это 6-битный программируемый 2- , 3- , 4-фазный контроллер, разработанный специально для питания Pentium-4. Процессор Pentium 4 жрет слишком большой ток и для поддержания напряжения в норме основному контроллеру требуется три вспомогательных стабилизатора ADP3418. Китайцы славятся своим мастерством собирать устройства с минимумом запчастей, но наш ASUS не принадлежит к числу пройдох и все детали присутствуют на плате — такие маленькие квадратные микросхемы, затерявшиеся среди дросселей и ключевых транзисторов.

Комбинация логических уровней на первых четырех ногах основного контроллера задает выходное напряжение (грубо), точная подстройка которого осуществляется резистором, подключенным к 9 выводу (FB). Чем меньше сопротивление — тем ниже напряжение и наоборот. Следовательно, мы должны выпаять резистор с платы и включить в разрыв цепи дополнительный резистор. Тогда мы сможем не только повысить напряжение сверх предельно допустимого, но и плавно его изменять, что очень хорошо!

Материнская плата ASUS P5K-E/WiFi-AP оснащена 8-фазным стабилизатором питания , собранным на дросселях с ферромагнитным сердечником и транзисторах MOSFET NIKOS P0903BDG (25 В, 9,5 мОм, 50 А) и SSM85T03GH (30 В; 6 мОм; 75 А). Четыре канала стабилизатора питания накрыты радиатором, который по большому счету служит для охлаждения северного моста, от которого тепло передается по тепловой трубке.

У ASUS фирменная микросхема управления питанием называется EPU (Energy Processing Unit) :

Из картинки выше понятно, что микросхема EPU не только генерирует правильное напряжение питания ядра процессора Vcore согласно сигналам VID, но также и общается с чипсетом по шине SM Bus, позволяя через управляющие сигналы такового генератора задавать частоту процессора согласно текущему профилю энергопотребления.

А вот фотография уникальной платы Gigabyte с 10-канальный VRM, который они называли фирменным термином PowerMOS ! В нем используется микросхемы фирмы International Rectifier (IR) IR3550 , каждая из которых в себя включает мощный синхронный драйвер затвора, упакованный в одном корпусе с управляющим MOSFET и синхронным MOSFET с диодом Шоттки. Максимальный ток — 60 А. Эта микросхема походит как для управления питанием мощных CPU, так и GPU, и многоканальных контроллеров памяти. Эта микросхема, как и аналогичные удовлетворяет спецификации Intel DrMOS V4.0.

Типовая схема включения IR3550 выглядит следующим образом:


Из картинки поднятно, что напряжение питания самой микросхемы Vcc от 4,5 до 7 V (подается с шины 5V), а выходнйо каскад — Vout.

Если вам пробуется найти схему включения любой микросхему. то это легко сделать в интернете по названию микросхемы и слову datasheet.

DrMOS также поддерживается компаниями MSI, Asrock и некоторыми другими. Более бюджетные производители по прежнему используют стандартный дизайн — отдельная микросхема ШИМ-контроллера и набор силовых мосфетов. Например, на свежей плате ECS X79R-AX на чипсете Intel X79 Express используется VRM-контроллер Intersil ISL6366 для управления 6+1 фазным питанием:

Из документации микросхема ISL6366 подддерживает стандарт Intel VR12/IMVP7 и имеет два выхода: одна на 6 фаз питания ядра или памяти, второй — на одну дополнительную фазу питания графики, микросхем мониторинга и отдельно линий I/O процессора. Более того, она имеет встроенные функции термомониторинга и термокмопенсации. Также микросхема непрерывно мониторит выходной ток через отдельный резистор и подстраивает напряжение питания. Сама микросхема используется в паре с драйверами ISL6627, подключаемыми к транзисторам:


По фото видно, что транзисторы здесь тоже упакованы в микросхемы, поэтому занимают очень мало место.

Кроме Analog Devices (микросхемы ADP), ШИМ-контроллеры VRM выпускают также Fairchild Semiconductor (FAN), International Rectifier (IR), Intersil (ISL) — очень популярны, Maxim (MAX), ON Semiconductor (NCP), Semtech (SC), STMicroelectronics (L), Analog Integrarion Corp. (AIC, нарисована корона), Richtek (RT) , количество контактов — от 16 до 24 pin.

На данный момент выпускают 33 модели микросхем, поддерживающие спецификацию VRM 10.1 и только 5 микросхем с поддержкой стандарта VRM 11.0 .:

  • ON Semiconductor NCP5381MNR2G - 2/¾ Phase Buck Controller for VR10 and VR11 Pentium IV Processor Applications
  • STMicroelectronics L6714 - 4-Phase Controller with Embedded Drivers for Intel VR10, VR11 and AMD 6-Bit CPUs
  • Intersil ISL6312CRZ - Four-Phase Buck PWM Controller with Integrated MOSFET Drivers for Intel VR10, VR11, and AMD Applications
  • Intersil ISL6312IRZ - Four-Phase Buck PWM Controller with Integrated MOSFET Drivers for Intel VR10, VR11, and AMD Applications
  • STMicroelectronics L6713A - 2/3-Phase Controller with Embedded Drivers for Intel VR10, VR11 and AMD 6-Bit CPUs

Как видно, многие, но далеко не все из этих микросхем импульсных регуляторов имеют 4 фазы стабилизации.

Питание памяти

В окрестностях DIMM-слот быстро обнаруживается несколько ключевых транзисторов, электролитических конденсатора и всего одна микросхема с маркировкой LM 358 . Такую микросхему производят все кому только не лень: Fairchild Semiconductor, Philips, ST Microelectronics, Texas Instruments, National Semiconductor и другие.

Это типичный операционный усилитель, причем — двойной. Распиновка приведена на , а схема типового включения — , из которой все становится ясно и типовая схема включения уже не нужна. Нужный нам резистор подключен к выходу операционного усилителя (ноги 1 и 7). Да не введет нас в заблуждение делитель на отрицательном входе. Он не имеет обратной связи по стабилизируемому напряжению и потому нас не интересует.

Смотрим на плату — 7-я нога зашунтирована через конденсатор и дальше никуда не идет, а вот за 1-й тянется дорожка печатного проводника. Значит, это и есть тот вывод, который нам нужен! Чтобы увеличить напряжение на памяти, необходимо включить в разрыв между 1-й ногой и резистором RF дополнительный резистор. Чем больше его сопротивление — тем выше выходное напряжение. Как вариант, можно подпаять между 2-й и 4-й ногами свой резистор (4-я нога — масса), чем меньше его сопротивление — тем выше напряжение и ничего разрывать не придется.

Для контроля напряжения можно использовать либо встроенную систему мониторинга напряжения (если она есть), либо мультиметр. Мультиметр надежнее и ему больше веры, встроенный мониторинг — удобнее, тем более что контролировать напряжение после вольтмода приходится постоянно. На холостых оборотах оно одно, под нагрузкой — другое. Весь вопрос в том, куда его подключать? Один из контактов — на массу, другой — на точку соединения двух ключевых транзисторов или транзистора с диодом. Если найти точку соединения не удалось (ничего смешного здесь нет — на вставленной в компьютер печатной плате разводку разглядеть довольно проблематично), можно подключаться к стоку каждого из транзисторов. У одного из них он идет к входному напряжению, у другого — к уже стабилизированному. Сток обычно расположен посередине и «продублирован» на корпус. Внешне он выглядит как «обрезанный» вывод. Соответственно, в схеме «транзистор плюс диод» сток всегда подключен к входному напряжению и тогда нам нужен исток — крайний правый вывод (если смотреть на транзистор в положении «ноги вниз»). Втыкаем сюда щуп вольтметра, медленно вращаем построечный резистор и смотрим. Если напряжение не меняется, значит мы подключили резистор не туда и все необходимо тщательно перепроверить.

Генераторы тактовой частоты

Обычно производители оставляют довольно солидный запас, и материнская плата сваливается в глюки задолго до его исчерпания, однако в некоторых случаях наши возможности очень даже ограничены. Некоторые платы не гонятся вообще! Что тогда? Тактовый генератор (он же «клокер») может быть собран на разных микросхемах (обычно это ICS или RTM ), которые можно программировать путем перебора комбинацией логических «0» и «1» на специальных выводах. Внешне это прямоугольная ИМС в корпусе SOP с кол-вом пинов от 20 до 56 в районе кварца. Таблицу частот можно найти в datasheet"е на микросхему. В древние времена, когда конфигурирование осуществлялось через перемычки, производителю было очень сложно «заблокировать» верхние частоты, но при настройке через BIOS setup — это легко! Придется пойти на довольно рискованный и радикальный шаг — отрезаем «комбинаторную» группу выводов от печатной платы и напаиваем на них jumper"ы с резисторами, схему соединения которых можно взять из того же datasheet"а. И тогда все будет в наших руках! Естественно, настраивать частоту через BIOS уже не удастся.

Микросхема тактового генератора ICS и кварца 14,318 МГц

А вот другой путь — замена кварца. В большинстве материнских плат стоит кварц, рассчитанный на частоту 14,318 МГц, если его заменить на более быстрый, то все частоты пропорционально подскочат, однако при этом, возможно, начнется полный глюкодром. Вообще говоря, замена кварца — неисследованная область, еще ждущая своих энтузиастов.

Клокеров на плате несколько — каждый отвечает за генерацию своего диапазона частот — один на процессор, другие на периферийные шины, GPU. Еще больше на плате кварцев — отдельный, например, стоит рядом с микросхемой сетевой карты и генерирует тактирование для передаче по локальной сети.


Выводы

Собственно, выход из строя ИМС ШИМ-контроллера VRM , выход из строя транзисторов преобразователя или вздутие (и как следствие потеря ёмкости) электролитических конденсаторов («бочек») в цепях питания VRM – это чаще всего встречающийся отказ материнских плат. Проявляется в виде того, что плата не стартует, не подавая признаков жизни или же стартует и выключается.

Применяемые в большинстве системных плат алюминиевые электролитические конденсаторы емкостью 1200 мкФ, 16 В или 1500 мкФ, 6,3 и 10 В обладают рядом недостатков, один из которых это высыхание по истечении времени. Следствием этого является потеря ими емкости, выход компонента из строя, появление аппаратных ошибок в цепях. Риск увеличивается при использовании подобных конденсаторов в тяжелых температурных условиях, например, в корпусе системного блока компьютера температура может доходить до 50-60° С.

Танталовые конденсаторы обладают большей надежностью, чем электролитические (нет эффекта высыхания), они более компактны и имеют меньшее значение параметра ESR, увеличивающее эффективность их применения в цепях фильтрации источников питания.

В последнее время вместо часто вздувающихся электролитических конденсаторов именитые производители плат стали использовать твердотельные конденсаторы. В схемах питания новой платы ASUS M3A79-T DELUXE на чипсете AMD 790FX используются высококачественные детали, в частности, транзисторы с низким сопротивлением в открытом состоянии (RDS (on )) для уменьшения потерь при переключении и снижения тепловыделения, дроссели с ферритовыми сердечниками , и, что очень важно, твердотельные полимерные конденсаторы от ведущих японских производителей (гарантийный срок службы модуля VRM – 5000 часов). Благодаря применению таких компонентов достигается максимальная эффективность энергопотребления, низкое тепловыделение и высокая стабильность работы системы. Это позволяет получить высокие результаты разгона и увеличить срок эксплуатации оборудования.

Такие же элементы используются например в материнской плате Gigabyte GA-P35T на чипсете P 35. Правда, и твердотельные конденсаторы взрываются, как правильно, в следствие повышенного напряжения или просто некачественных элементов (да, такое тоже встречается!):

VRM на обычных электролитических конденсаторах имеет MTBF всего около 3000 часов.

По возможности необходимо выбирать те материнские платы, которые используются 4-фазный импульсный регулятор. В цепях фильтра VRM предпочтительно должны стоять твердотельные, а не алюминиевые электролитические конденсаторы, дроссели должны иметь ферритовый сердечник. Кроме того, на грамотно спроектированной плате, конденсаторы фильтра не должны стоять вплотную к кулеру процессора и к дросселям, чтобы не происходило их перегрева.

В идеальном варианте, необходимо выбирать те платы, которые имеют отдельный независимый регулятор напряжения для CPU, памяти и шины видеокарты. В этом случае, вы сможете отдельно регулировать напряжение на каждом из компонентов, не вызывая роста напряжения на других!

Схема регулируемого блока питания 0…24 В, 0…3 А,
с регулятором тока ограничения.

В статье мы приводим вам не сложную принципиальную схему регулируемого 0 …24 Вольта блока питания. Ограничение тока регулируется переменным резистором R8 в диапазоне 0 … 3 Ампера. При желании этот диапазон можно увеличить путем уменьшения номинала резистора R6. Данный ограничитель тока является защитой блока питания от перегрузок и коротких замыканий на выходе. Величина выходного напряжения задается переменным резистором R3. И так, принципиальная схема:

Максимальное напряжение на выходе блока питания зависит от напряжения стабилизации стабилитрона VD5. В схеме применен импортный стабилитрон BZX24, его U стабилизации лежит в диапазоне 22,8…25,2 Вольта согласно описанию.

Вы можете скачать datashit на все стабилитроны этой линейки (BZX2…BZX39) по прямой ссылке с нашего сайта:

Так же в схеме можно применить отечественный стабилитрон КС527.

Список элементов схемы блока питания:

● R1 - 180 Ом, 0,5 Вт
● R2 - 6,8 кОм, 0,5 Вт
● R3 - 10 кОм, переменный (6,8…22 кОм)
● R4 - 6,8 кОм, 0,5 Вт
● R5 - 7,5 кОм, 0,5 Вт
● R6 - 0,22 Ом, 5 Вт (0,1…0,5 Ом)
● R7 - 20 кОм, 0,5 Вт
● R8 - 100 Ом, подстраиваемый (47…330 Ом)
● С1, С2 - 1000 х 35V (2200 х 50V)
● С3 - 1 х 35V
● С4 - 470 х 35V
● 100n - керамический (0,01…0,47 мкФ)
● F1 - 5 Ампер
● Т1 - КТ816, можно поставить импортный BD140
● Т2 - BC548, можно поставить BC547
● Т3 - КТ815, можно поставить импортный BD139
● Т4 - КТ819, можно поставить импортный 2N3055
● Т5 - КТ815, можно поставить импортный BD139
● VD1…VD4 - КД202, или импортная диодная сборка на ток не менее 6 Ампер
● VD5 - BZX24 (BZX27), можно заменить отечественным КС527
● VD6 - АЛ307Б (RED LED)

О выборе конденсаторов.

С1 и С2 стоят параллельно, поэтому их емкости складываются. Номиналы их выбираются из примерного расчета 1000 мкФ на 1 Ампер тока. То есть, если вы захотите поднять максимальный ток БП до 5…6 Ампер, значит номиналы С1 и С2 можно поставить по 2200 мкФ каждая. Рабочее напряжение этих конденсаторов выбирается изи расчета Uвх * 4/3 , то есть, если напряжение на выходе диодного моста составляет порядка 30 Вольт, значит (30*4/3=40) конденсаторы должны быть расчитаны на рабочее напряжение не менее 40 Вольт.
Номинал конденсатора С4 выбирается примерно из расчета 200 мкФ на 1 Ампер тока.

Печатная плата блока питания 0…24 В, 0…3 А:

О деталях блока питания.

● Трансформатор - должен быть соответствующей мощности, то есть если максимальное напряжение вашего блока питания составляет 24 Вольта, и вы рассчитываете, что ваш БП должен обеспечивать ток порядка 5 Ампер, соответственно (24 * 5 = 120) мощность трансформатора должна быть не менее 120 Ватт. Обычно трансформатор выбирают с небольшим запасом по мощности (от 10 до 50 %) Подробнее о расчете можно прочитать статью:

Если вы решили применить в схеме тороидальный трансформатор, его расчет описан в статье:

● Диодный мост - по схеме собран на отдельных четырех диодах КД202, они расчитаны на прямой ток 5 Ампер, параметры в таблице ниже:

5 Ампер это максимальный ток для этих диодов, и то установленных на радиаторы, поэтому для тока в 5 и более ампер лучше применять импортные диодные сборки ампер на 10.

Как альтернативу можете рассмотреть 10 Амперные диоды 10А2, 10А4, 10А6, 10А8, 10А10, внешний вид и параметры на картинках ниже:

На наш взгляд, лучшим вариантом выпрямителя будет применение импортных диодных сборок, например, типа KBU-RS 10/15/25/35 A, они и токи большие выдерживают, и места занимают гораздо меньше.

Параметры можете скачать по прямой ссылке:

● Транзистор Т1 - может слегка нагреваться, поэтому лучше его установить на небольшой радиатор или пластину из алюминия.

● Транзистор Т4 - однозначно будет нагреваться, поэтому ему нужен хороший радиатор. Это связано с мощностью, рассеиваемой на этом транзисторе. Приведем пример: на коллекторе транзистора Т4 имеем 30 Вольт, на выходе БП установили 12 Вольт, а ток при этом течет 5 Ампер. Получается, что 18 Вольт остается на транзисторе, а 18 Вольт умноженное на 5 Ампер получим 90 Ватт, это та мощность которая будет рассеиваться на транзисторе Т4. И чем меньшее напряжение вы установите на выходе БП, тем мощность рассеивания будет больше. Отсюда следует то, что транзистор следует выбирать внимательно, и обращать внимание на его характеристики. Ниже находятся две прямые ссылки на транзисторы КТ819 и 2N3055, можете скачать их себе на компьютер:

Регулировка тока ограничения.

Включаем блок питания, регулятором выходного напряжения устанавливаем 5 Вольт на выходе в холостом режиме, подключаем к выходу резистор 1 Ом мощностью не менее 5 Ватт с последовательно подключенным амперметром.
С помощью подстроечного резистора R8 устанавливаем необходимый ток ограничения, и чтобы убедиться, что ограничение работает, вращаем регулятор уровня выходного напряжения вплоть до крайнего положения, то есть до максимума, при этом величина выходного тока должна быть неизменной. Если вам не нужно изменять ток ограничения, тогда вместо резистора R8 установите перемычку между эмиттером Т4 и базой Т5, и тогда при номинале резистора R6 0,39 Ом ограничение тока будет происходить при токе 3 Ампера.

Как увеличить максимальный ток БП.

● Применение трансформатора соответствующей мощности, способного длительно отдавать требуемый ток в нагрузку.

● Применение диодов или диодных сборок, способных длительно выдерживать требуемый ток.

● Применение параллельного соединения регулирующих транзисторов (Т4). Схема параллельного включения ниже:

Мощность резисторов Rш1 и Rш2 не менее 5 Ватт. Транзисторы оба устанавливаются на радиатор, компьютерный вентилятор на обдув лишним не будет.

● Увеличение номиналов емкостей С1, С2, С4. (Если применять БП для заряда автомобильных аккумуляторов, этот пункт не критичен)

● Дорожки печатной платы, по которым будут течь большие токи, залудить оловом потолще, или поверх дорожек напаять дополнительный провод их утолщающий.

● Применение толстых соединительных проводов по линиям больших токов.

Внешний вид собранной платы блока питания:

Всем привет. У всех, кто занимается электроникой, должен быть . Если паять неохота или вы начинающий радиолюбитель - эта статья специально для вас написана. Сразу поговорим про характеристики блока питания и его отличие от популярных разновидностей БП на LM317 или LM338.

Модули для БП

Мы будем собирать импульсный блок питания, но паять ничего не будем, просто купим у китайцев уже спаянный модуль регулировки напряжения с ограничением тока, такой модуль может отдать 30 вольт 5 ампер. Согласитесь, что не каждый аналоговый БП на такое способен, да и какие потери в виде тепла, так как транзистор или микросхема лишнее напряжение берет на себя. О конкретном типе модуля и его схеме не пишу - они всякие бывают.

Теперь индикация - здесь мы тоже ничего изобретать не будем, возьмем готовый модуль индикации, как и с модулем управления напряжением.

Чем буде все это питать от сети 220 В - читаем дальше. Здесь есть два пути.

  1. Первый - искать готовый трансформатор или намотать свой.
  2. Второй - это взять импульсный БП на нужное напряжение и ток, или доработать под нужные характеристики.

И да, забыл сказать, что подать на модуль управления максимально без последствий можно 32 вольта, но лучше 30 вольт 5 ампер, с током нужно быть аккуратнее тоже, так как схема управления терпит 5 ампер, но не более, но отдаёт все что есть на трансформаторе потому и легко сгорает.

Сборка БП

Сам процесс сборки ещё занятнее дело. Давайте расскажу как у меня предстают дела с комплектующими.

  • Блок питания импульсный от ноутбука 19 вольт 3.5 ампер.
  • Модуль управления.
  • Модуль индикации.

Вот и все, да-да я ничего не забыл дописать, но наверное ещё нам нужен какой-то старый корпус. У меня от советской автомагнитолы пошёл в дело, также пойдет и любой другой, но отдельно хочу похвалить корпус от DVD привода ПК.

Собираем наш будущий блок питания, прежде чем прикрепить плати к корпусу, нужно их изолировать, я дал подложку из толстой пленки и тогда все платы можно прикрепить на двухсторонний скотч.

Но когда дело дошло к переменным резисторам для регулировки напряжения и ограничения тока я понял, что у меня их нет, ну не то что вообще нет - нужного номинала нет, а именно 10 К. Но на плате они есть, и я поступил следующим образом: нашёл два переменника спаленных (чтоб не жалко было), изъял ручки и думал их припаять к переменникам, что были на плате, почему были - я их выпаял, и залудил винт.

Но ничего не вышло, отцентрировать смог лишь когда через термоусадку сделал вот эту ерунду. Но она работала, меня устраивает, а как долго она будет работать - узнаем.

По желанию можно покрасить корпус, у меня это не очень хорошо получилось, но лучше чем просто металл.

В результате у нас получился очень компактный легкий лабораторный блок питания, обладающий защитой от короткого замыкания, ограничением тока, и разумеется, регулировкой напряжения. И все это делается очень плавно благодаря многооборотным резисторам, которые были выпаяны из платы управления. Регулировка напряжения оказалась от 0.8 вольт до 20. Ограничение тока от 20 мА до 4 А. Всем удачи, с вами был Kalyan.Super.Bos

Обсудить статью САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ НА ГОТОВЫХ МОДУЛЯХ

Я думаю что некоторые читатели еще помнят мой обзор конструктора для сборки линейного лабораторного блока питания. Плата, несмотря на свои некоторые недоработки, получилась довольно интересной.
Когда мне товарищ дал ссылку обозреваемый конструктор, то первая мысль была - да это та же плата, но в реальности все оказалось немного по другому.
В общем кому интересна подобная тема и кто хочет узнать как собрать небольшой лабораторный блок питания, прошу под кат.

С обзорами различной бытовой электроники я как то отошел от свой привычной темы блоков питания. Я делал уже много обзоров как на регулируемый, так и на обычные блоки питания.
Но пройти мимо этого конструктора я не смог, думаю вы меня поймете.
В обзоре будет не только плата для сборки блока питания, а и некоторые дополнительные товары, которые я также осмотрю, покажу и выскажу свое мнение. Часть мне дали в магазине Банггуд для этого обзора, часть куплена у нас в оффлайне.

Так как многие конструкторы уже раньше были в виде разработок энтузиастов, а потом были скопированы китайскими производителями, то я провел небольшое расследование, чтобы узнать «откуда ноги растут» у данного конструктора и кое что нарыл:)

Но давайте будем последовательны, зачем нарушать привычный ход обзора.

Как всегда сначала пару слов об упаковке.
Так как товары шли с разных складов, то прислали несколько посылок, лишь только в одной было два товара сразу.
Возможно мне показалось, но вроде магазин стал более тщательно упаковывать товары.

Если вытрусить все из белой упаковки, то получим некоторое количество пакетиков.
Я не стал скромничать и заказал разные товары, но преследующие общую цель, собрать небольшой блок питания.

Для начала конечно плата блока питания. Плата упакована в индивидуальную картонную коробочку, внутри антистатический пакет.

Внутри пакета все просто лежит само по себе и если высыпать на стол содержимое, то будет вот такая кучка.

Вспомнив известную картинку с игрушками в песочнице, привел все в порядок, разложив более аккуратно:)
Вот на этой фотографии и становятся заметны первые отличия от предыдущего варианта блока питания. Здесь цифровое управление и соответственно присутствует ЖК дисплей.
Кроме того производитель разбил конструкцию на две платы. Одна плата силовая, вторая - управления.

Рассмотрим платы немного внимательнее.
Качество изготовления обеих плат отличное, присутствует маска и шелкография с обозначением номиналов установленных элементов, потому схема даже и не нужна, впрочем ее и не дают в комплекте. Материал платы - текстолит, а не дешевый гетинакс, что тоже является большим плюсом хоть для новичка, хоть для опытного радиолюбителя.

Силовая плата.
Размеры 84х67мм.
Эта плата изначально мне очень напомнила плату из предыдущего обзора. Сначала я даже подумал, что это она и есть, только к ней прикрутили цифровое управление, но на самом деле блоки питания кардинально разные.



Плата управления.
Размеры платы немного меньше, 80х56мм.
На плате сразу видны места под два энкодера, а также большое количество резисторов.



Так как схемы в комплекте не было, то я начертил свою. Возможно где то мог допустить ошибку, но старался быть максимально точным. Если заметили ошибку, пишите, исправлю.

Изначально планировал разбить схему на составные узлы, но сначала приведу полный вариант.
Что удивило:
Выходной конденсатор имеет емкость всего 100нФ.
Кроме входного, на плате отсутствуют электролитические конденсаторы.
Экономные китайские инженеры поставили параллельно контактам термореле конденсатор.

Как я писал в самом начале, схема не является чем то новым, потому был найден и оригинал.
Схема обозреваемой платы несколько доработана и изменена, но все равно можно увидеть что принципиально они почти одинаковые.
Схема была найдена и , причем даже с исходниками. Кроме того в оригинале устройство даже поддерживает работу с компьютером, но эта функция не проверялась.

Схемное решение устройства очень простое. «Сердцем» является микроконтроллер, к которому подключен ЦАП (цифро аналоговый преобразователь) в виде R2R матрицы.
Меняя код на выходе микроконтроллера мы можем получать изменяемое постоянное напряжение на выходе. Такие ЦАПы просты, но требуют большого количества выходов микроконтроллера, так как каждый разряд требует отдельного выхода, а чем больше разрядов, тем больше точность установки выходного напряжения.
В данном устройстве реализован 10 бит ЦАП, т.е. можно получить 1024 уровня напряжения.
Применительно к данному БП можно получить дискретность установки напряжения 0,027 Вольта и тока 0,002 Ампера.
На самом деле регулировка позволяет выставлять напряжение с дискретностью 0.1 Вольта, а ток 0.01 Ампера. В большинстве ситуаций этого хватает.

А вот ключевое отличие содержится не в том, как формируется напряжение для регулировки, а как происходит обратная связь.
Дело в том, что чаще всего микроконтроллер выдает опорное напряжение, которое потом сравнивается с реальным при помощи операционного усилителя и в итоге мы получаем стабилизированное напряжение или ток.
Опорное напряжение при этом формируется чаще всего при помощи ШИМ с интегрированием (усреднением) на конденсаторе.
Но в таком варианте надо 2 ЦАП, один для тока, второй для напряжения. А так как разработчик решил применить другой принцип формирования, то два ЦАП с R2R матрицей просто не вышло бы. Собственно потому сравнением также занимается микроконтроллер.

Такой способ регулирования обычно медленнее, чем более привычный с применением операционного усилителя. Но разработчик применил свое программное решение, где есть два цикла работы, быстрый и медленный.
Как я понимаю, быстрый цикл работает работает более грубо, чтобы обеспечить скорость, а медленный потом устанавливает напряжение более точно.
Так как я не программист, то пишу как понял. возможно знающие люди смогут понять больше из приведенной программы и описания - .

Напряжение после ЦАПа, поступает на силовой узел.
В реальности силовой узел обозреваемой платы решен чуть по другому, в усилителе тока применили силовой транзистор другой проводимости и немного изменили схему, но принцип действия остался абсолютно тем же.
Выходное напряжение с ЦАПа поступает на усилитель напряжения, нам ведь мало диапазона 0-2.5 Вольта, потому сначала оно усиливается до уровня около 0-30 Вольт (левая часть схемы).
Но так как усилитель напряжения не может обеспечить требуемый ток, то дальше стоит усилитель тока, он почти не меняет напряжение и потому на выходе обеспечивает заданные 0-28 Вольт, но уже с током нагрузки до 2 Ампер.
В описании схемы на страничке разработчика приведено два варианта решения, 22 Вольт 2.5 Ампера и 28 Вольт 2 Ампера.
2 Ампера ток не очень большой для лабораторного БП, но думаю что при желании можно доработать прошивку и получить больший ток.

При всей своей кажущейся громоздкости схема устройства предельно проста.
Для примера я разбил схему на составные узлы:
Красный цвет - усилитель тока
Синий цвет - ЦАП и усилитель напряжения
Зеленый цвет - обратная связь по напряжению
Розовый цвет - обратная связь по току.

С теорией вроде немного разобрались, хотя и будем возвращаться к ней эпизодически, но пора приступать к сборке.
Первым делом находим все резисторы, которые идут в комплекте, заодно я попробую показать, как можно собрать такую плату не прибегая к тестеру для измерения сопротивлений «полосатых» резисторов.
Все компоненты, до определенного этапа, я только вставляю в плату (набиваю) и только потом запаиваю. Я знаю что некоторые делают иначе, но я так привык, ничего не могу поделать:)

Монтаж печатной платы

Для начала находим ленты с самым большим количеством компонентов, это позволит сразу забить большее количество компонентов и следующие будет легче находить.
В данном случае это два номинала, 10 и 20 кОм, каждого по 11 штук, но разобраться где какой очень просто, у номинала 20 кОм первая (или последняя, смотря как взять в руки) полоска красная.

Выводы можно формовать при помощи небольшой оправки, это одно из полезных приспособлений, которое я распечатал на 3D принтере. В принципе ее можно изготовить из листа металла, согнув его в виде буквы V и сделав надфилем прорези в необходимых местах.
Такое приспособление очень облегчает и улучшает вид готового изделия.

Следующими идут резисторы номиналом 470 Ом, 4.7 кОм и 47 кОм.
Здесь также все просто, первые две полоски имеют общий для всех этих резисторов цвет, это видно на фото, но количество резисторов разное, потому определить где какой предельно просто, для этого надо просто посчитать сколько каких надо по маркировке на плате:)

Ну и пара последних номиналов, здесь также как и в прошлый раз, два одного номинала и один другого, перепутать тяжело (если производитель не «поможет»).

Конденсаторы, 2шт 22нФ и 6шт 100нФ, маркировка на плате присутствует.

Два диода 4007, стабилитрон и три транзистора. Стабилитрон помечен на плате как 5V1, не перепутайте полярность, катод помечен на плате и компоненте жирной полоской.

Транзисторов три, у большего на плате жирной полосой отмечена сторона, где находится металлическая пластина.

Пара подстроечных резисторов и панелька.
Один подстроечный резистор неправильно вставить не получится, а второй не имеет значения как ставить.
Панелька имеет ключ на одной из коротких сторон. Конечно панелька не сгорит, если ее неправильно установить, но так как микроконтроллер потом в нее устанавливается также согласно вырезу, то лучше ставить правильно:)

Как я писал выше, качество плат великолепное. Платы паялись без флюса, использовался только припой с флюсом внутри, паяется все отлично.



Переходим к разъемам. Здесь надо быть внимательными, так как некоторые разъемы имеют ключ, обозначенный на плате. Если установить неправильно, то в худшем случае плата управления выйдет из строя.

При припаивании разъема к дисплею я всегда советую сначала «прихватить» два крайних вывода, выровнять ровно разъем, а потом запаять все остальные выводы.
Я припаял к дисплею гнездовую часть разъема, хотя на самом деле непринципиально, можно и штыревую, тогда гнездовая будет на основной плате.

Так выглядит комплект после первоначальной сборки.
Плата управления лежит так неспроста, один из разъемов припаян не сверху платы, а снизу.

Интуитивно, при сборке скорее всего захочется припаять разъем сверху, это вполне логично, но так вы столкнетесь с двумя проблемами, вы не сможете к нему ничего подключить, дисплей будет мешать. А если все таки сможете подключить шлейф, то выводить спереди его крайне неудобно, так как плата обычно крепится к передней панели.
На фото показано как ставить разъем при условии, что на силовой плате разъем установлен согласно ключу.

Пара энкодеров.
Довольно важное отличие от предыдущего БП. В тот раз для плавной регулировки я применял многооборотные резисторы, они также стоят дополнительных денег, здесь это не нужно.
Кроме того разработчик применил алгоритм регулировки, когда быстрое вращение регулирует единицы вольт, а медленное - десятые доли. Правда чувствительность перехода довольно большая, потому если вращать чуть быстрее, программа переключается на «вторую» скорость.

Вставить их неправильно тяжело, но не очень понравилось то, что крепежные «ушки» ставятся совсем плотно, такое чувство, что расстояние между отверстиями сделали чуть меньше необходимого. Впрочем немного подгибаем, вставляем и запаиваем.

Окончательный этап сборки платы управления.
Берем саму плату, дисплей, микроконтроллер, пару стоек, четыре винта и пару гаек для энкодеров. Последняя позиция нужна скорее для того, чтобы не потерять, мне гайки не понадобились.

Не забываем о правильной установке микроконтроллера, так как родной прошивки в открытом доступе нет и цена неправильной установки равна цене нового набора.

Все, узел управления готов.

Теперь заканчиваем сборку силовой платы.
Выводы мощных диодов и резистора я формую так, чтобы компонент был приподнят над платой.
По большому счету в данном конструкторе это необязательно, так как мощность, выделяемая на компонентах, заметно ниже чем у предыдущего варианта.
Например в предыдущем БП на шунте выделялось около 4.5 Ватта, а здесь всего 2 Ватта.
На диодах разница меньше, всего в 1.5 раза, но все равно существенно.
Кроме того здесь можно оставить родные диоды, так как они применены с запасом, а если и менять, то на Шоттки, тогда будет немного больше запас по входному напряжению. В общем замена на свое усмотрение.

На плате размещаются два стабилизатора напряжения:
7824 - 24 Вольт для питания вентилятора и понижения напряжения для 5 Вольт стабилизатора.
Так как в изначальном варианте схемы вентилятор отсутствует, то там просто поставили супрессор последовательно со входом, чтобы немного уменьшить рассеиваемую на стабилизаторе мощность и не превысить его входное напряжение. Дело в том, что стабилизатор 7824 выдерживает до 40 Вольт входного напряжения, а остальные только до 35, потому в нашем варианте можно подавать на вход до 40 Вольт (постоянного).
7805 - 5 Вольт для питания платы управления.

Кстати, в обозреваемом БП можно вполне спокойно применить не 50Гц трансформатор, а любой блок питания с напряжением более 30 Вольт. В прошлый раз необходимо было переменное напряжение на входе для формирования отрицательного 5 Вольт для питания операционных усилителей.

Стабилизаторы устанавливаются на небольшие радиаторы. Здесь все просто, намазали, привинтили, но крепежный винт просто «наживляем», затягивать не надо.
Вставляем радиаторы с установленными стабилизаторами на плату, запаиваем, затягиваем крепежные винты. Родных радиаторов достаточно, греются, но в пределах допустимого.

Входной конденсатор имеет емкость 3300мкФ, реальная немного меньше, но не думаю что это критично.

Устанавливаем конденсатор на место, не забываем, длинный вывод - плюс, короткий - минус. Кстати, у отечественных конденсаторов на корпусе отмечался плюс, а длинным был минусовой, возможно пригодится.
На плате плюсовой контакт отметили аж двумя значками, да еще и минусовой раскрасили штриховкой. Все правильно, если конденсатор впаять неправильно, то его внутренности почти равномерно распределятся по всей комнате.

Основная часть сборки плат окончена, в конце этого этапа у нас должно остаться три вещи, мощный транзистор, термовыключатель и шлейф.
Если у вас осталось что то еще, то два варианта, либо положили лишнее, либо где то забыли впаять, первый вариант предпочтительнее:)

Вообще сначала надо было собрать все, установить транзистор на радиатор и только потом пробовать. Но я не удержался и попробовал сразу после сборки, просто вставил мощный транзистор в отверстия. Но лучше так не делать:)
Справедливости ради стоит сказать, что при первом включении я получил просто равномерно подсвеченный дисплей. Если все собрано правильно, то просто надо отрегулировать контрастность при помощи подстроечного резистора на плате управления до получения нормальной видимости.

Устройство работает, ну по крайней мере пока старательно делает вид, что работает, а я перейду к описанию того, что заказал еще.

Я решил что емкости на входе много не бывает, потому параллельно установленному 3300мкФ будет еще одни, с заявленной емкостью аж 22000мкФ.
Название со страницы магазина - 63V 22000UF Electrolytic Capacitor 35X50MM, цена $ 3.33,

Как и все товары, конденсатор идет в индивидуальной упаковке, в лоте одна штука.
Маркировка от Nippon Chemi-con.



Размеры конденсатора примерно 47х35мм.

Ну а теперь можно попробовать подвести итоги этого длинного обзора. Не буду расписывать плюсы и минусы дополнительных товаров, их я показал в самом обзоре, выскажусь только по плате блока питания.
Плюсы
Очень хорошее качество изготовления печатных плат
Неплохое качество комплектующих
При правильной сборке нормально работает
Настройка минимальна и предельно проста
Возможность установки тока без подключения нагрузки
Точная регулировка выходного напряжения и тока
Нет необходимости покупать вольтметр и амперметр
Термореле для автоматического включения вентилятора

Минусы
Выходной ток всего 2 Ампера
Чувствительный переход между точной и грубой настройкой выходного напряжения и тока
Отсутствие схемы в комплекте, инструкция по сборке есть в электронном виде.

Мое мнение. Конструктор однозначно интересный. По сути здесь есть все, что необходимо для сборки блока питания, дополнительно надо только трансформатор, радиатор и корпус. В прошлый раз часто спрашивали как применить вместо трансформатора импульсный БП, здесь такой проблемы нет, БП может быть любым. Также были вопросы по добавлению индикации тока и напряжения, здесь уже «все включено», ну и приятный бонус в виде энкодеров, не нужны многооборотные резисторы. Для меня большим плюсом является то, что можно сначала выставить необходимый ток, а только потом подключить нагрузку, в прошлом БП это было невозможно, особенно при наличии многооборотных резисторов.
Ну и как не отметить то, что к этому конструктору есть исходный вариант программы (правда без энкодеров), который можно при желании доработать под себя. В теории, после доработки, можно подключить и к компьютеру, но мне кажется что в данном случае это уже лишнее.
Из минусов пожалуй отмечу только то, что цифровая обратная связь все таки медленнее аналоговой, здесь никуда не деться, по крайней мере дешевыми способами.

Конечно будут комментарии вида - да за хх баксов можно купить готовый БП. Конечно, так и есть, спорить не буду, можно купить, но ведь не все покупается за деньги. А как же удовольствие от процесса сборки, от полученного результата, да и просто от приятно проведенного времени, сколько это стоит?

На кого ориентирован данный конструктор. Мне кажется что в первую очередь на начинающих радиолюбителей. Как вариант, можно подарить подростку, интересующемуся радиоэлектроникой, стыдно за такой подарок точно не будет. Также такой конструктор может подойти и более опытным, просто в качестве полезной вещи и приятно проведенного времени.

На этом наверное все, жду как всегда комментариев и вопросов, надеюсь что обзор был полезен и интересен.

Понравилась статья? Поделитесь с друзьями!